
 IJMIE VOLUME 6, ISSUE 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

76

MARCH
2016

Control Flow Exploration and

Optimization of Superscalar Processor

Priya P. Ravale-Nerkar
*

Dr. (Mrs.) Sulabha S. Apte
**

Abstract— Design of a microprocessor involves consideration of an optimal microarchitecture

for a given objective function and a given set of constraints. Superscalar processing is the latest

in along series of innovations aimed at producing ever-faster microprocessors. By exploiting

instruction-level parallelism, superscalar processors [1] are capable of executing more than one

instruction in a clock cycle. The architectural design of super scalar processor involves a lot of

trade off issues when selecting parameter values for instruction level parallelism. The use of

critical quantitative analysis based upon the Simple Scalar simulations is done to select optimal

parameter values for the processor aimed at performance improvement. This paper aims at

finding optimal values for the branch prediction for super scalar processor and determines which

processor parameters have the greatest impact on the performance of the system.

Index Terms — Superscalar, Control Hazards, Branch Prediction, Benchmarks,

Microprocessor Optimization, Simple Scalar, Instruction Level Parallelism.

——————————  ——————————

* Rearch Scholar, W.I.T., Solapur, Solapur University, Solapur

** W.I.T., Solapur, Solapur University, Solapur

 IJMIE VOLUME 6, ISSUE 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

77

MARCH
2016

1 INTRODUCTION

here would hardly be any application today, which does not require computer Research to de-

sign new architectures. Designing a new microprocessor is a complex process. These design is-

sues typically concern performance, cycle time, power consumption, chip area, reliability, securi-

ty, verifiability, etc. The task for a designer is to optimize the microarchitecture such that a given

objective function is optimized. This paper covers the Control dependence problem in Supersca-

lar Architectures and the resolution method area in detail.

 Superscalar architecture is one of the most popularly used architectures in recent high-end

processors. It uses various techniques to achieve high system speed like, different branch predic-

tion techniques, software based data dependence etc. Actual implementation of design is a very

tedious task. Equally difficult is measuring performance of such a system. Since various factors

like branch misprediction, cache miss, data hazards interact with each other in a complex man-

ner. Generally, in any research work, a novel idea is tested for only one of the factors and at the

same time it should also be tested to see the performance related to other factors like miss ratio

of cache, instruction issue rate, instructions committed per cycle (IPC), instructions executed per

cycle etc. In the present investigations, performance is tried out on various workloads in different

areas. Every parameter, in the areas branch prediction policies is varied and result of its effect on

all the performance factors is considered. The main performance metric is IPC. Finally, we sug-

gest a superscalar processor system, which will give optimum performance.

2 Simulation Tool

Any system can be designed by one of the following three ways:

1. Building the actual prototype and testing

2. Building the analytical model and testing

3. Simulating the model on computer and testing it on Computer.

Today’s processor architectures are so complex that for all new developments, the third method

is used. There are a few simulators available for development of new architectures. Simulation

tools used in computer architectures arere broadly classified in to two categories:

T

 IJMIE VOLUME 6, ISSUE 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

78

MARCH
2016

1. Trace driven simulators

2. Execution driven simulators

Trace driven simulators execute an instruction trace. This trace is captured during a previous

execution. An instruction trace consists of a sequence of instruction records [64]. Each record

contains: Instruction’s virtual address, Instruction word, Effective address (if required), Some

flags etc. On the other hand Execution driven simulators accept a program as an input and it runs

the program, at the same time generating a trace on the fly.

3 SIMPLESCALAR BACKGROUND

SimpleScalar is a freeware tool available for simulating processor architectures and measuring

their performance. It is an execution driven simulator [2] with a set of tools that model a virtual

computer system with CPU, Cache and Memory Hierarchy. Using the Simple Scalar tools [1],

user can build modeling applications that simulate real programs running on a range of modern

processors and systems. The tool set includes sample simulators ranging from a fast functional

simulator to a detailed, dynamically scheduled processor model that supports non-blocking cach-

es, speculative execution, and state-of-the-art branch prediction. In this paper branch prediction

policies and its related parameters are considered for evaluating the performance of a superscalar

processor.

4 EXPERIMENTAL SETUP

To determine the effect of various processor parameters and their interactions, we used sim-

outorder from the SimpleScalar tool suite (version 3.0) [3]. This simulator has several processor

parameters that can be easily changed. The basic experimental setup used for simulation is

shown in below Fig. 1.

 IJMIE VOLUME 6, ISSUE 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

79

MARCH
2016

Fig.1. Experimental Setup

5 FACTORS AVAILABLE FOR BRANCHES UNDER CONTROL DEPENDENCES

Control dependence problem arises due to branch instructions. There are many resolution me-

thods on control hazard problem and intensive research is going on, on this problem, even today.

A misprediction causes heavy penalty in the form of pipeline flush or pipeline stall, so many

cycles are wasted. All resolution methods include hardware for prediction of branch in fetch

stage. These methods are commonly known as branch prediction methods. There are various me-

thods for predicting the outcome of the branch [8].

The methods used can be broadly classified into two categories:

1. Static 2. Dynamic

Static methods are dealt with by the compiler, so that when compiler is converting a program

in to machine language, it checks the opcode and depending on some preset criteria, decides

whether a branch will be taken or not. e.g. in programs, many loop branches have negative direc-

tion (‘for’ loop in C) and most of the times they are taken (except for the last one). Therefore all

the negative branches can be predicted as ‘taken’. On the other hand in dynamic branch predic-

tion methods, the prediction depends on the past history and the current execution of the pro-

gram. The information becomes actually available during the execution of the program and de-

pending upon the past history changes dynamically. In Simple Scalar, five resolution methods are

facilitated. Out of these five methods, two are static and three are dynamic. The methods are giv-

en in table of Table 1.

 Compiler

Simulator

Results of

simulation

Command line

options

Various factors

(command line

options)

Input Data

 IJMIE VOLUME 6, ISSUE 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

80

MARCH
2016

Sr.No. Name of Scheme Type

1 Taken Static

2 Nottaken Static

3 bimod Dynamic

4 2 lev Dynamic

5 comb Dynamic

TABLE 1 BRANCH PREDICTION SCHEMES IN SIMPLESCALAR

Two static methods are taken and nottaken, that consider a conditional branch instruction to be

‘always taken’ and ‘always

not taken’ respectively. The dynamic predictors ‘bimod’ is a bimodal branch predictor, which is a

single level ‘2 bit counter (2bc)’ stored in Branch Target Buffer (BTB) for every branch. The

predictor described in the Fig. 2 is a ‘2lev’-dynamic 2 level branch predictor. At the first level, it

maintains an ‘n’ bit Branch History Shift Register (BHSR), which maintains past history of past

‘n’ occurrences of branches, so it is a global branch history register. The second level is an array

of two bit counters with the help of which the outcome of the current branch is predicted.

Pattern history 2-bit predictors

 Branch Branch Prediction

 Address History-size

Fig.2. ‘2-lev’ Predictor in Simple Scalar

A ‘comb’ is a combination of bimodal and 2level predictors. This in fact uses three predictors in

parallel. Bimodal, gshare (a type of 2level branch predictor) and a bimodal like predictor. This is

shown in a Fig. 3.

 11

size

 IJMIE VOLUME 6, ISSUE 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

81

MARCH
2016

Fig.3. ‘comb’ Predictor in Simple Scalar

In the initial stages of research, any ‘C’ program was considered as a workload and it was

tested on all simulators. The results were tabulated and analyzed. Such hundreds of thousands of

programs were tried and analyzed. Slowly, a clear analysis picture emerged, from which we

could take the decision as to which workloads affect the performance and which parameter gets

affected. From this analysis, the areas were decided to consider for further experimenting, so that

a final decision of optimum performance of the system can be taken.

Areas of benchmarks considered as workloads are as follows:

1. Data structures

2. Operating systems

3. Numerical programs:– including programs like, Series,

 Pyramid, Pi etc

7 RESULTS OF BRANCH PREDICTION POLICIES WITH DEFAULT PARAMETERS

As stated earlier, two static predictors ‘taken’, ‘nottaken’ and three dynamic predictors ‘bimod’,

‘2 lev’ & ‘comb’ are available in branch prediction policies. Also, three areas of benchmarks

were considered in the research: Small, medium and large. Also,it was observed that both static

prediction schemes perform very poor and as for the dynamic schemes, the results are really

good for the default prediction policies[7]. Therefore in further discussions only three default

dynamic prediction schemes with large workload area are taken into account.

Bimodal

Predictor

gshare predictor

Choice

Predictor

 IJMIE VOLUME 6, ISSUE 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

82

MARCH
2016

7.1 Performance by varying the default predictors with IPC

Fig.4. IPC for Default Branch Prediction Schemes with LARGE Work loads

Fig. 4 displays results of large workloads for dynamic schemes in default mode. It is clear from

the result that, ‘comb’ has comparatively increased IPC. The default parameters are further va-

ried to judge the change in performance with IPC.

IPC for different branch prediction schemes

LARGE WORKLOADS

(IPC * 100)

115

120

125

130

135

140

145

B
IM

O
D

:2
0
4
8
,B

T
B

=
5
1
2
,4

B
IM

O
D

:4
0
9
6
,B

T
B

=
1
0
2
4
,4

B
IM

O
D

:8
1
9
2
,B

T
B

=
2
0
4
8
,4

B
IM

O
D

:1
6
3
8
4
,B

T
B

=
4
0
9
6
,4

2
L
E

V
(G

A
p
):

1
,1

0
2
4
,8

,0

2
L
E

V
(G

A
g
):

1
,1

0
2
4
,1

0
,0

2
L
E

V
(g

s
h
a
re

):
1
,1

0
2
4
,1

0
,1

C
O

M
B

:1
0
2
4

C
O

M
B

:2
0
4
8

B
IM

O
D

:2
0
4
8
,B

T
B

=
5
1
2
,4

B
IM

O
D

:4
0
9
6
,B

T
B

=
1
0
2
4
,4

B
IM

O
D

:8
1
9
2
,B

T
B

=
2
0
4
8
,4

B
IM

O
D

:1
6
3
8
4
,B

T
B

=
4
0
9
6
,4

2
L
E

V
(G

A
p
):

1
,1

0
2
4
,8

,0

2
L
E

V
(G

A
g
):

1
,1

0
2
4
,1

0
,0

2
L
E

V
(g

s
h
a
re

):
1
,1

0
2
4
,1

0
,1

C
O

M
B

:1
0
2
4

C
O

M
B

:2
0
4
8

PARTITIONS MAGIC

Fig.5. IPC for LARGE Workloads

In the case, shown in Fig. 5, it is observed that, ‘comb’ has given the maximum IPC, but except-

ing ‘2level’ (default), all others are very close by. The best choice is still ‘comb’. Before select-

ing the parameters for optimum performance, the combination of ‘comb’ with others are tried

out. That is taken up in the next section.

 IJMIE VOLUME 6, ISSUE 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

83

MARCH
2016

7.2 Performance of combining ‘comb’ with other factors

IPC for COMB with different combinations of FETCH,

ISSUE WIDTH

(IPC * 100)

128

130

132

134

136

138

140

142

144

C
O

M
B

C
O

M
B

,
F

=
8

C
O

M
B

,
F

=
1
6

C
O

M
B

,
F

=
3
2

C
O

M
B

,
F

=
6
4

C
O

M
B

,
I=

8

C
O

M
B

,
I=

1
6

C
O

M
B

,
I=

3
2

C
O

M
B

,
I=

8
,

F
=

8

C
O

M
B

,
I=

1
6
,

F
=

1
6

B
IM

O
D

=
2
0
4
8
,

B
T

B
=

5
1
2
,4

,

I=
1
6
,

F
=

1
6

FIFO

Fig.6. IPC for Combination of Prediction Policies with Fetch and Issue Widths

As shown in fig. 6, increasing fetch width to 32 in combination with default ‘comb’ gives

highest IPC. Further increasing fetch width does not improve the performance, rather it starts

going in the negative direction. As for the issue width attached with ‘comb’, IPC enhancement is

observed up to issue width 16. Further it starts declining. If both fetch and issue are combined

with ‘comb’, then the result is different. For both widths with values of 8 and 16, performance

boosts up substantially. It is almost at par with combination of fetch=32 and ‘comb’.

Before drawing any conclusions, the performance for large benchmarks, prediction policy with

other factors are also taken into consideration.

IPC for 'comb' with other factors

(IPC * 100)

138

140

142

144

146

148

150

152

COMB COMB, F=32 COMB, F=8, I=8 COMB, I=16,

F=16

COMB, I=8, F=8,

D=8, C=8

COMB, I=16,

F=16, D=16, C=16

MAGIC

Fig.7. IPC for Combination of Prediction Policies with Fetch, Issue , Commit Widths

As shown in Fig. 7, Maximum IPC is resulted at ‘comb’ with fetch, issue, decode and commit

widths at 8. It gives a sudden decline at all the widths at 16. When in any program, more hard-

ware is facilitated; it gives good result only if it can extract the parallelism. It is not always poss-

 IJMIE VOLUME 6, ISSUE 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

84

MARCH
2016

ible as, it needs software help by compiler. Without that, increased hardware will go waste. The

same thing is happening here. The best combination for IPC is then ‘comb’ with fetch, issue, de-

code and commit widths at 8. Thus the various combinational results of IPC are considered to

decide a combination for optimum result.

8 CONCLUSION

For all the above variations, IPC is also noted down. It is always necessary to consider IPC along

with the metric for that particular area. Actually, for superscalar architectures, getting better IPC

is more important for improving overall performance of the system.

In the results presented in fig. 4 & 5’comb’ has comparatively increased IPC. To decide on other

parameters along with ‘comb’ results of fig 6 are alsotaken into considerations, and it is clearly

observed that IPC enhances for widths 8 & 16. Finally results of Fig. 7, shows, maximum IPC is

obtained for ‘comb’ combined with all fetch, issue, decode and commit widths to be 8. Finally,

the combination suggested for optimum results is tabulated in table ahead.

Sr.

No.
Parameter

Value suggested

for optimum re-

sult

1. Prediction Poli-

cy
Combinational

2. Fetch Width 8

3. Issue Width 8

4. Decode Width 8

5. Commit Width 8

TABLE 2 SHOWING PARAMETERS SUGGESTED FOR OPTIMUM RESULTS

 IJMIE VOLUME 6, ISSUE 3 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

85

MARCH
2016

REFERENCES

[1] http://www.simplescalar.com

[2] Doug Burger and Todd M. Austin, The SimpleScalar Tool Set.

[3] J. Hennessy and D. Patterson, \Computer architecture: A quantitative approach, fourth edi-

tion"

[4] D. C. Burger and T. M. Austin, The SimpleScalarTool Set, Computer Architecture News,

1997.

[5] Doug Burger, James R. Goodman, Billion -Transistor Architecture IEEE 1997.

[6] James E. Smith, Microarchitecture of Superscalar Processors IEEE 1995.

[7] Priya P. Ravale and Sulabha S. Apte, Design of a Branch Prediction Unit of a Microprocessor

Based on Superscalar Architecture using VLSI, IEEE2010, V3-355.

[8] Lee and Smith, Branch prediction strategies and branch target buffer design, IEEE-84.

[9] Manoj Ransing and Vishal Mamania, Branch Prediction and Case Studies.

[10] Collins, Wang, et.al. Speculative precomputation: Long range prefetching of delinquent

loads, IEEE-2001.

[11] Zilles and Sohi, Execution based prediction using speculative slices, ISCA-2001.

[12] Kevin Skadron, Douglas W. Clark, et.al., Branch Prediction, Instruction-Window Size,

and Cache Size : Performance Trade-offs and Simulation Techniques, IEEE 1999.

[13] Krishna Kavi, Georgi, et.al. Scheduled data flow : Execution paradigm, architecture and

performance evaluation, IEEE-2001.

http://www.simplescalar.com/

